Publications in peer-review journals

  1. T. Merlette, J. Diani, 2025. Linear viscoelasticity of anisotropic carbon fibers reinforced thermoplastics: from micromechanics to dynamic torsion experiments. Composites Part B, 290,111931 https://doi.org/10.1016/j.compositesb.2024.111931.
  2. F. Gouhier, J. Diani, A. vandenbroucke, 2024. A finite strain viscoelastic model with damage and tension-compression asymmetry considerations for solid propellants. Mechanics of Materials, 199, 105152, https://doi.org/10.1016/j.mechmat.2024.105152.
  3. F. Gouhier, J. Diani, 2024. A comparison of finite strain viscoelastic models based on the multiplicative decomposition. European Journal Mechanics of Solids A, 108, 105424, https://doi.org/10.1016/j.euromechsol.2024.105424.
  4. A. Coq, J. Diani, 2024. Comparison of Mode I fracture toughness of an elastic and an elastoplastic methyl methacrylate polymer as measured by SENB and DCDC tests. Engineering Fracture Mechanics, 306, 110237, https://doi.org/10.1016/j.engfracmech.2024.110237.
  5. A. Coq, J. Diani, S. Brach, 2024. Comparison of the phase-field approach and cohesive element modeling to analyze the double cleavage drilled compression fracture test of an elastoplastic material. International journal of fracture, 245, 209-222. https://doi.org/10.1007/s10704-023-00755-2.
  6. H. Luo, Z. Hooshmand, K. Danas, J. Diani, 2023. Numerical estimation via remeshing and analytical modeling of nonlinear elastic composites comprising a large volume fraction of randomly distributed particles and voids. European Journal of Mechanics A/Solids, 101, 105076.
  7. A. Joubert, G. Allaire, S. Amstutz, J. Diani, 2023. Damping optimization of viscoelastic thin structures, application and analysis. Structural and Multidisciplinary Optimization, 66, 149. https://doi.org/10.1007/s00158-023-03602-z.
  8. E. Ernault, J. Diani, Q. Schmid, 2023. Single-lap joint creep behaviour of two soft adhesives. Journal of Adhesion, 99, 1282-1298. https://doi.org/10.1080/00218464.2022.2100254.
  9. A. Joubert, G. Allaire, S. Amstutz, J. Diani, 2022. Damping otpimization of viscoelastic cantilever beams and plates under free vibration. Computers and Structures, 268, 106811. https://www.sciencedirect.com/science/article/pii/S0045794922000712.
  10. J. Diani, E. Strauch-Hausser, 2021. Linear viscoelasticity of an acrylate IPN, analysis and micromechanics modeling. Soft Matter, 17, 7341-7349. https://doi.org/10.1039/d1sm00808k.
  11. E. Ernault, J. Diani, S. Hallais, C. Cocquet, 2021. Relationship between microstructure and mechanical properties of polyether block amide foams. Polymer Engineering Science, 61, 1971-1981. https://doi.org/10.1002/pen.25712.
  12. P. Le Tallec, J. Diani, 2021. Variational upscaling for modeling state of strain dependent behavior and stress induced crystallization in rubberlike materials. Continuum Mechanics and Thermodynamics, 33, 749-766. https://doi.org/10.1007/s00161-020-00954-5.
  13. F. de Francqueville, J. Diani, P. Gilormini, A. vandenbroucke, 2021. Use of micromechanical approach to understand the mechanical behavior of solid propellants. Mechanics of materials, 153, 103656. https://doi.org/10.1016/j.mechmat.2020.103656
  14. J. Diani, 2020. Free vibration of linear viscoelastic polymer cantilever beams. Comptes rendus de Mécanique, 348, 797-806. https://doi.org/10.5802/crmeca.15
  15. D. Roucou, J. Diani, M. Brieu, D. Colombo, 2020. Experimental identification of fracture toughness of a carbon-black filled styrene butadiene rubber undergoing energy dissipation by Mullins softening. Mechanics of Materials, 151, 103645. https://doi.org/10.1016/j.mechmat.2020.103645
  16. F. de Francqueville, P. Gilormini, J. Diani, A. Vandenbroucke, 2020. Comparison of the finite strain macroscopic behavior and local damage of a soft matrix highly reinforced by spherical or polyhedral particles. European Journal of Mechanics of Solids A, 84, 104070.
  17. F. de Francqueville, P. Gilormini, J. Diani, A. Vandenbroucke, 2020. Relationship between local damage and macroscopic response of soft materials highly reinforced by monodispersed particles. Mechanics of Materials, 146, 103408, https://doi.org/10.1016/j.mechmat.2020.103408.
  18. J. Diani, P. Le Tallec, 2019. A fully equilibrated microsphere model with damage for rubberlike materials. Journal of Mechanics and Physics of Solids, 124, 702-713. https://doi.org/10.1016/j.jmps.2018.11.021.
  19. F. de Francqueville, P. Gilormini, J. Diani, 2019. Representative volume elements for the simulation of isotropic composites highly filled with monosized spheres. International Journal of Solids and Structures, 158, 277-288. https://doi.org/10.1016/j.ijsolstr.2018.09.013
  20. D. Roucou, J. Diani, M. Brieu, A. Mbiakop-Ngassa, 2019. Critical strain energy release rate of rubbers: Single edge notch tension vs. Pure shear tests. International Journal of Fracture, 209, 163-170. https://doi.org/10.1007/s10704-018-00336-8.
  21. P.A. Toulemonde, J. Diani, P. Gilormini, N. Desgardin, R. Nevière, 2018. Propellant cohesive fracture during the peel test of a propellant/liner structure, Journal of Adhesion, 94, 657-666. https://doi.org/10.1080/00218464.2017.1332999.
  22. D. Roucou, J. Diani, M. Brieu, J.F. Witz, A. Mbiakop-Ngassa, 2018. Experimental investigation of elastomer mode I fracture: An attempt to estimate critical strain energy release rate using SENT tests. International Journal of Fracture, 209,163-170. https://doi.org/10.1007/s10704-017-0251-x.
  23. J. Diani, P. Gilormini, 2017. On necessary precautions when measuring solid polymer linear viscoelasticity with dynamic analysis in torsion. Polymer Testing, 63, 275-280. https://doi.org/10.1016/j.polymertesting.2017.08.025.
  24. P. Gilormini, P.A. Toulemonde, J. Diani, A. Gardere, 2017. Stress-strain response and volume change of a highly filled rubbery composite: experimental measurements and numerical simulations. Mechanics of Materials, 111, 57-65. https://doi.org/10.1016/j.mechmat.2017.05.006.
  25. P. Gilormini, J. Diani, 2017. Some Features of the PPR cohesive-zone model combined with a linear unloading/reloading relationship. Engineering Fracture Mechanics, 173, 32-40. https://doi.org/10.1016/j.engfracmech.2017.01.017.
  26. J. Diani, P. Gilormini, 2017. Molecular mobility with respect to accessible volume in Monte Carlo lattice model for polymers. Physica A, 468, 825-831. https://doi.org/10.1016/j.physa.2016.11.088.
  27. P.A. Toulemonde, J. Diani, P. Gilormini, N. Desgardin, R. Nevière, 2017. Effects of small particles on the mechanical behavior and on the local damage of highly filled elastomers. Journal of Materials Science, 52, 878-888. https://doi.org/10.1007/s10853-016-0383-9.
  28. P.A. Toulemonde, J. Diani, P. Gilormini, G. Lacroix, N. Desgardin, 2016. Roles of the interphase stiffness and percolation on the behavior of solid propellants. Propellants. Explosives and Pyrotechnics, 41, 978-986.
  29. P.A. Toulemonde, J. Diani, P. Gilormini, N. Desgardin, 2016. On the account of a cohesive interface for modeling the behavior until break of highly filled elastomers. Mechanics of Materials, 93, 124-133.
  30. J. Diani, 2016. Directional constitutive laws for rubbers. Rubber Chemistry and Technology, 89, 22-31.
  31. P. Gilormini, J. Diani, 2015. Testing some implementations of a cohesive zone model at finite strain. Engineering Fracture Mechanics, 148, 97-109.
  32. J. Diani, M. Brieu, K. Batzler, P. Zerlauth, 2015. Effect of Mullins softening on mode I fracture of carbon-black filled rubbers, International Journal of Fracture, 194, 11-18.
  33. P-A Toulemonde, J. Diani, P. Gilormini, N. Desgardin, 2015. A numerical study of the influence of polydispersity on the behaviour until break of a reinforced hyperelastic material with a cohesive interface. Matériaux et Techniques, 103, 306.
  34. J. Diani, P. Gilormini, S. Arrieta, 2015. Direct experimental evidence of time-temperature superposition at finite strain for an amorphous polymer network. Polymer, 58, 107-112.
  35. R.Diaz, J. Diani, P. Gilormini, 2014. Physical interpretation of the Mullins softening in a carbon-black filled SBR. Polymer, 55, 4942-4947.
  36. S. Arrieta, J. Diani, P. Gilormini, 2014. Experimental and modelling studies of the shape memory properties of amorphous polymer network composites. Smart Materials and Structure, 23, 095009.
  37. J. Diani, P. Gilormini, G. Agbobada, 2014. Experimental study and numerical simulation of the vertical bounce of a polymer ball over a wide temperature range. Journal of Materials Science, 49, 2154-2163.
  38. J. Diani, P. Gilormini, 2014. Using a pattern-based homogenization scheme for modeling the linear viscoelasticity of nano-reinforced polymers with an interphase. Journal of Mechanics and Physics of Solids, 63, 51-61.
  39. S. Arrieta, J. Diani, P. Gilormini, 2014. Cyclic and monotonic testing of free and constrained recovery properties of a chemically crosslinked acrylate. Journal of applied polymer science, 131,39813.
  40. S. Arrieta, J. Diani, P. Gilormini, 2014. Experimental characterization and thermoviscoelastic modeling of strain and stress recoveries of an amorphous polymer network. Mechanics of Materials, 68, 95-103.
  41. Y. Merckel, J. Diani, M. Brieu, J. Caillard, 2013. Effects of the amount of fillers and of the crosslink density on the mechanical behavior of carbon-black filled styrene butadiene rubbers. Journal of applied polymer science, 129, 2086-2091.
  42. J. Diani, P. Gilormini, Y. Merckel, F. Vion-Loisel, 2013. Micromechanical modeling of the linear viscoelasticity of carbon-black filled styrene butadiene rubbers: the role of the rubber-filler interphase. Mechanics of Materials, 59, 65-72.
  43. Y. Merckel, J. Diani, M. Brieu, J. Caillard, 2013. Constitutive modeling of the anisotropic behavior of Mullins softened filled rubbers. Mechanics of Materials, 57, 30-41.
  44. J. Diani, Y. Merckel, M. Brieu, J. Caillard, 2013. A comparison of stress softenings in carbon-black filled NR and SBR. Rubber Chemistry and Technology, 86(4), 572-578.
  45. J. de Crevoisier, G. Besnard, Y. Merckel, H. Zhang, F. Vion-Loisel, J. Caillard, D. Berghezant, C. Creton, J. Diani, M. Brieu, F. Hild, S. Roux, 2012. Volume changes in a filled elastomer studied via digital image correlation. Polymer Testing, 31, 663-670.
  46. Y. Merckel, M. Brieu, J. Diani, J. Caillard, 2012. A Mullins softening criterion for general loading conditions. Journal of the Mechanics and physics of solids, 60, 1257-1260.
  47. J. Diani, P. Gilormini, C. Frédy, I. Rousseau, 2012. Predicting thermal shape memory of crosslinked network polymers from linear viscoelasticity. International Journal of Solids and Structures, 49, 793-799.
  48. P. Gilormini, J. Diani, 2012. On modelling shape memory polymers as elastic two-phase composite materials. Comptes Rendus de Mécanique, 340, 338-348.
  49. Y. Merckel, J. Diani, M. Brieu, P. Gilormini, J. Caillard, 2012. Effect of the microstructure parameters on the Mullins softening in carbon-black filled SBRs. Journal of Applied Polymer 123(2), 1153-1161.
  50. Y. Merckel, J. Diani, M. Brieu, D. Berghezan, 2011. Experimental characterization and modelling of the cyclic softening of carbon-black filled rubbers. Materials Science and Engineering A, 528, 8651-8659.
  51. Y. Merckel, J. Diani, M. Brieu, P. Gilormini, J. Caillard, 2011. Characterization of the Mullins effect of filled rubbers. Rubber Chemistry and Technology, 84(3), 402-414.
  52. J. Diani, C. Fredy, P. Gilormini, Y. Merckel, G. Regnier, I. Rousseau, 2011. A torsion test for the study of the large deformation recovery of shape memory polymers. Polymer Testing, 30, 335-341.
  53. Y. Merckel, J. Diani, S. Roux, M. Brieu, 2011. A simple framework for full-network hyperelasticity and anisotropic damage, Journal of the Mechanics and Physics of Solids, 59, 75-88.
  54. M. Brieu, J. Diani, C. Mignot, C. Moriceau, 2010. Response of a carbon-black filled SBR under large strain cyclic uniaxial tension. International Journal of Fatigue, 32, 1921-1927.
  55. J. Gillibert, M. Brieu, J. Diani, 2010. Anisotropy of direction-based consitutive models for rubber-like materials, International Journal of Solids and Structures, 47, 640-646.
  56. B. Fayolle, P. Gilormini, J. Diani, 2010. An experimental and analytical study of the elasticity of model polyurethane networks crosslinked by tri- and quadriisocyanate. Colloid and Polymer Science, 288(1), 97-103.
  57. C.A. Cruz, J. Diani, G. Régnier, 2009. Micromechanical modelling of the viscoelastic behaviour of an amorphous poly(ethylene)terephtalate (PET) reinforced by spherical glass beads. Composites Part A, 40, 695-701.
  58. J. Diani, B. Fayolle, P. Gilormini, 2009. A review on the Mullins effect. European Polymer Journal, 45, 601-612.
  59. A.M. Ortega, S. Kasprzak, C.M. Yakacki, J. Diani, A.R. Greenberg, K. Gall, 2008. Structure-property relationships in photopolymerizable polymer networks: Effect of composition on the crosslinked structure and resulting thermomechanical properties of a (meth) acrylate-based system, Journal of applied polymer science, 110, 1559-1572.
  60. J. Diani, A.M. Ortega, K. Gall, S. Kasprzak, A.R. Greenberg, 2008. On the relevance of the 8-chain model and the full-network Model for the deformation and failure of networks formed through photopolymerization of multifunctional monomers. Journal of polymer science Part B: Polymer physics, 46(12), 1226-1234.
  61. J. Diani, B. Fayolle, P. Gilormini, 2008. Study on the temperature dependence of the bulk modulus of polyisoprene by molecular dynamics simulations, Molecular Simulation, 34, 1143-1148.
  62. J. Diani, F. Bédoui, G. Régnier, 2008. On the relevance of the micromechanics approach for predicting the linear viscoelastic behaviour of semi-crystalline poly(ethylene)terephtalates (PET). Materials Science and Engineering A, 475, 229-234.
  63. J. Diani, K. Gall, 2007. Molecular dynamics simulations of the shape-memory behaviour of polyisoprene. Smart Materials and Structures, 16, 1575-1583.
  64. M. Brieu, J. Diani, N. Bhatnagar, 2007. A New biaxial tension test fixture for uniaxial testing machine – a validation for hyperelastic behavior of rubber-Like materials. Journal of testing and Evaluation, 35(4),1-9.
  65. F. Bedoui, J. Diani, G. Regnier and W. Seiler, 2006. Micromechanical modeling of isotropic elastic behavior of semicrystalline polymer. Acta Materialia, 54(6), 1513-1523.
  66. J. Diani, Y. Liu and K. Gall, 2006. Finite strain 3D thermo-viscoelastic constitutive model for shape memory polymers, Polymer Engineering and Science. 41(12), 486-492.
  67. J. Diani, M. Brieu and J-M. Vacherand, 2006. A damage directional constitutive model for Mullins effect with permanent set and induced anisotropy. European Journal of Mechanics A/ Solids, 25(3), 483-496.
  68. J. Diani, M. Brieu and P. Gilormini, 2006. Observation and modeling of anisotropic visco-hyperelastic behavior of a rubberlike material. International Journal of Solids and Structures, 43, 3044-3056.
  69. Y. Liu, K. Gall, M.L. Dunn, A.R. Greenberg and J. Diani, 2006. Thermomechanics of shape memory polymers: Uniaxial experiments and constitutive modeling. International Journal of Plasticity, 22(2), 279-313.
  70. J. Diani and P. Gilormini, 2005. Combining the logarithmic strain and the full-network model for a better understanding of the hyperelastic behavior of rubber-like materials. Journal of the Mechanics and Physics of Solids, 53, 2579-2596.
  71. F. Bedoui, J. Diani and G. Regnier, 2004. Micromechanical modeling of elastic properties in polyolefins, Polymer, 45(7), 2433-2442.
  72. J. Diani, M. Brieu, J-M. Vacherand and A. Rezgui, 2004. Directional model for isotropic and anisotropic rubber-like materials, Mechanics of Materials, 36, 313-321.
  73. J. Diani, 2001. Irreversible growth of a spherical cavity in rubber-like material : A fracture mechanics description, International journal of Fracture, 112, 151-161.
  74. J. Lambert-Diani and D.M. Parks, 2000. Problem of an inclusion in an infinite body, approach in large deformation, Mechanics of Materials, 32, 43-55.
  75. J. Lambert-Diani and C. Rey, 1999. New phenomenological behavior laws for rubbers and thermoplastic elastomers, European Journal of Mechanics A/ Solids, 18, 1027-1043.
  76. J. Lambert-Diani and C. Rey, 1998. Élaboration de nouvelles lois de comportement pour les élastomères : principe et avantages. Compte Rendu à l’Académie des Sciences Paris, II.b. 326 483-488.